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Understanding the spatial interactions of human mobility is crucial for urban planning, tra±c
engineering, as well as for the prevention and control of infectious diseases. Although many
models have been developed to model human mobility, it is not clear whether such models could
also capture the traveling mechanisms across di®erent time periods (e.g. workdays, weekends or
holidays). With one-year long nationwide location-based service (LBS) data in China, we in-
vestigate the spatiotemporal characteristics of population movements during di®erent time
periods, and make thorough comparisons for the applicability of ¯ve state-of-the-art human
mobility models. We ¯nd that population °ows show signi¯cant periodicity and strong in-
equality across temporal and spatial distribution. A strong \back°ow" e®ect is found for cross-
city movements before and after holidays. Parameter ¯tting of gravity models reveals that
travels in di®erent type of days consider the attractiveness of destinations and cost of distance
di®erently. Surprisingly, the comparison indicates that the parameter-free opportunity priority
selection (OPS) model outperforms other models and is the best to characterize human mobility
in China across all six di®erent types of days. However, there is still an urgent need for de-
velopment of more dedicated models for human mobility on weekends and di®erent types of
holidays.

Keywords: Population movement; seasonal migration; human mobility; human mobility models.

PACS Nos.: 89.75.!k, 89.75.Kd, 05.40.!a.

1. Introduction

On the one hand, uncovering the human mobility patterns that characterize the
trajectories followed by humans during their daily activities is signi¯cant for infec-
tious disease prevention and control,1–8 city planning,9,10 tra±c engineering,11 crisis
management12,13 and economic forecasting.14,15 On the other hand, human mobility
is the driving force for many important societal dynamics, such as the spread of
infectious diseases,3,13,16–18,8,5 economic development,19,20 cultural exchange,21,22

environmental change23,24 and tra±c demand.25

Many researchers have tried to understand human mobility patterns26–30 and
challenges in order to solve the problem of human mobility predicting29,31–36 by
mathematical modeling. Gonzalez et al.26 and many of the other researchers27–30,37

have found that human trajectories show a high degree of temporal and spatial
regularity, which has prompted the proposal of some representative models and
prediction approaches for modeling and predicting human mobility. Inspired by
Newton's law of gravitation, Zipf has proposed the gravity model31,38 to predict
mobility °ow. Along with the gravity model, Stou®er39 has developed the inter-
vention opportunity (IO) model to describe human mobility. Stou®er suggests that
the key role in determining migration comprises both the destination's opportunities
(an analogy of something that can ful¯ll the individual's travel purpose, such as
working opportunities, and higher salaries) and the intervening opportunities (see
Fig. 1(a)) between the origin and the destination but not the distance. The two
models have sometimes been compared in di®erent studies,40–46 but there is no
uni¯ed conclusion on the best model for a variety of °ows; for example, sometimes
the two have similar levels of performance,40,41 or the gravity model outperforms the
IO model42,44,47 and vice versa.45,46
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However, the applications of the variants of the IO model are limited due to the
lack of e®ective methods to measure the ranking of IOs48 and to estimate parameters,
owing to the nonlinear formulation. To overcome the limitation of the IO model,
Simini et al.49 has proposed the radiation model, which is parameter-free and has
rigorous derivation based on the assumption that people prefer to select the closest
location with higher bene¯ts than those of the origin. The radiation model shows
strong predictive performance for a wide range of °ows, such as commuting, mi-
gration and commodity in the United States. However, some of the later studies have
shown that the radiation model cannot be applied to spatial scales for all.32–34,50–54

Further research has found that the radiation model tends to overestimate short-
distance °ow and underestimate long-distance °ow on the city scale,50,55 indicating
that more universal models are needed to characterize the mobility patterns on
di®erent spatial scales.33,34,50,52,56–58 For this purpose, Yan et al.52 established the
population-weighted opportunities (PWOs) model for the prediction of mobility
patterns in cities. Inspired by the PWO model and the prudent social model,58 Liu
and Yan50 introduced the opportunity priority selection (OPS) model, which
assumes that the destination selected by the individual is the location that presents
higher bene¯ts (usually replaced by the local population) than those of the origin and
of the intervening opportunities. Additionally, Yan et al.34 proposed a more universal
model for the prediction of intracity and intercity mobility patterns at both the
individual and the population levels by combining the PWO model with the con-
tinuous-time random walks model.59 In general, individuals will compare the bene¯ts
at di®erent locations when the variants of the IO model are used for human mobility
prediction, but the rules for comparing the bene¯ts of di®erent models di®er.

(a) (b)

Fig. 1. Illustration of opportunity models. (a) Distance and intervening opportunity. Each circle
represents a location with di®erent bene¯tsml (represented by the size of the circle), location i is the origin
and the other locations are potential destinations. Then, the intervening opportunities between origin i
and destination j are equal to the sum of all opportunities of the locations between i and j, that is,
sij ¼ ma þmb þmc þmd. (b) Opportunity ranking and destination selection. We use ml to represent the
maximum opportunity bene¯t at location l, and the height of the bar in the ¯gure represents the value m
at each location. If the maximum opportunity bene¯ts of the locations are mi ¼ ma ¼ 1;mb ¼ mc ¼
3;mc ¼ 3;md ¼ 5 and mj ¼ 8, then the individual at location i will only choose location b as the desti-
nation in the radiation model. Location j will be chosen in the OO model, no matter how far from i it is.
However, the individual will choose d or j with di®erent probabilities in the OPS model, which is decided
by distance dij.
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Motivated by Ohm's law of electricity,60 Sallah et al.32 introduced a new parameter-
free human mobility model called the impedance model for population °ow predic-
tion. Analogizing population °ow with electricity, the impedance model likens the
number of trips per day to an electric current, which is driven by the voltage (the
population di®erence in the model) and blocked by the resistor (the distance between
two places in the model). The impedance model has been successfully used in human
mobility prediction during the cholera epidemic in Haiti. Additionally, Li et al.61

proposed a concept of \active population", based on which they proposed a uni¯ed
model that can reproduce the spatial scalings for population, total road length and
total number of socioeconomic interactions.

Despite the success of those models in speci¯c spatial scales, there is still a lack of
explicit and comprehensive understanding of the underlying mechanism accounting
for the e®ect of time and holiday e®ects on human mobility patterns. Meanwhile,
accurate, complete and high-resolution data across di®erent time periods are still
scarce in the ¯eld of study. To overcome these limitations, in this work, we analyzed
and summarized comprehensively the underlying spatiotemporal mechanism of
mobility patterns during workdays, weekends, holidays and the Chunyun migration
period (the Spring Festival travel season may be the largest periodic human mi-
gration in the world, when usually begins 15 days before Spring Festival and lasts for
around 40 days). Using nationwide location-based service (LBS) data, we measured
population °ow and aggregate national migrants by the prefectures of destination.
On this basis, we selected several mobility models to evaluate the validity of
assumptions on the underlying mechanisms of population °ow during di®erent pe-
riod. The remainder of the paper is organized as follows: Sec. 2 introduces the dataset
and the methods used in this study. Section 3 analyzes the spatial–temporal char-
acteristic of population °ow in China and compares ¯ve models on the performance
of ¯tting human mobility patterns across di®erent periods. Finally, Sec. 4 concludes
and discusses the main ¯ndings and limitations.

2. Data and Methods

2.1. Datasets

LBS mobility data. A large-scale national-level mobility dataset, extracted from
Baidu's LBS, was used for the analysis of human mobility patterns in China. The
location of a device (typically a mobile phone) can be determined when it uses
Baidu's LBS, provided that the user has agreed to its data collection policy. Baidu is
the dominant internet service provider in China, which o®ers a range of consumer
features, including maps, news, videos, an encyclopedia, antivirus software and
internet TV for mobile devices and personal computers.

We extracted data from April 23, 2013 to April 29, 2014. The raw data were
anonymous, aggregated daily °ows of population data collected at the county level
(2959 counties). We then aggregated the intracounty °ows with those at the pre-
fecture level (358 prefectures) for further analysis. The data from di®erent dates were
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divided into six categories according to the type of day: workdays, weekends, three-day
holidays (legal holidays other than New Year's Day and the Spring Festival in China),
New Year's Day (only one day o® on January 1, 2014), National Day (October 1–7,
2013) and the Chunyun migration times (January 16–February 24, 2014). The
representativeness and the validity of the LBS data have been veri¯ed in previous
studies 13 such that the data highly conform with the mobility matrix produced by
complete taxi-based global positioning system (GPS) locations.

Population data.The population data used in models for predicting the
mobility of people across locations come from the sixth national census62 (the most
recent data are from the 2013 census), which are the most detailed, systematic and
authoritative data on the population in China. The study covered 358 administrative
units, including four municipalities and 354 prefecture-level cities in the mainland,
excluding Hong Kong, Macao and Taiwan.

2.2. Mobility models

2.2.1. Gravity model

Proposed by Zipf in 1946, the gravity model31 is analogous to Newton's law of
gravitation. This model assumes that the mobility °ow between locations i and j is
proportional to the populations mi and mj in the two locations and decays with a
power function63 of the travel distance dij between i and j. The probability Pij that
individuals move from location i to location j can be approximated by

Pij ¼ !
mimj

d"
ij

; ð1Þ

where ! and " are adjustable exponents. To ensure that the predicted °ow matrix T
satis¯es Oi ¼

P
jTij, we use an origin-constrained gravity model,

Pij ¼
m!

j d
!"
ijP

i6¼j
m!

j d
!"
ij

; ð2Þ

where mj represents the attractiveness of destination j, ! is an evaluation indicator
of the attractiveness of destination j, " is the evaluation indicator of the travel cost,
and the larger the index !=", the more attractive the destination, the higher the
travel cost.

2.2.2. Intervention opportunity models

Radiation model. The radiation model49 assumes that the travelers will select a
location as their destination through three steps. It ¯rst assigns a ¯tness (chosen from
some distribution, pðzÞ) to every location according to its bene¯ts. Second, it ranks
all bene¯ts according to the distance between the origin and the destination. Third,
the closest location with higher bene¯ts than those of the origin (location b in Fig. 1(b))
is selected as the travel destination. As a result, the probability of travelers from
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location i to location j takes the form

Pij ¼
1

1! mi
M

mimj

mi þ sij
! "

& mi þ sij þmj

! " ; ð3Þ

where mi and mj represent the opportunities of origin i and destination j, respec-
tively, denotes the total opportunities of all the locations between i and j; and Sij is
the number of intervening opportunities [40] (see Fig. 1(a)), which is the total
number of opportunities in the circle of radius dij centered on i (excluding the origin
and the destination).

OPS model.The OPS model50 assumes that the probability of a destination
being selected by an individual is proportional to the bene¯ts at the destination and
inversely proportional to the total number of intervening opportunities between the
origin and the destination (the locations b, d or j in Fig. 1(b)). Then, the probability
of the individual at location i choosing location j as the destination is

Pij ¼
mj= mi þ sij þmj

! "
P
i6¼j

mj= mi þ sij þmj

! " : ð4Þ

Opportunity only model. The opportunity only (OO) model33 is an extreme
form of the IO model, in which the individuals take the bene¯ts as the only con-
sideration. Therefore, travelers tend to select the location with the highest bene¯ts
(the location j in Fig. 1(b)), accounting for the probability that a destination chosen
by individuals is proportional to the bene¯ts at the destination, where the proba-
bility of the mobility °ow between two communities i and j can be approximated by

Pij ¼
mj= mi þmj

! "
P
i6¼j

mj= mi þmj

! " : ð5Þ

2.2.3. Impedance model

The impedance model32 is proposed using an analogy with electricity such that it
assimilates the electric resistance to the distance, the electric current to the number of trips
per day, and the electric potential to the mobility potential per day on a given trajectory.
Therefore, the probability of an individual at location i traveling to j is given by

Pij ¼
mi þmj

! "
=dijP

i6¼j
mi þmj

! "
=dij

; ð6Þ

where mi and mj denote the populations of locations i and j, respectively.

2.3. Metrics of evaluation

Sørensenrensen similarity index. The Sørensen similarity index (SSI)64 is fre-
quently used to measure the similarity between two samples. Here, we apply a
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modi¯ed version of the index, which has been proposed by Liu and Yan33 to measure
the accuracy of the predictive °ow reproduced by theoretical models, de¯ned as

SSI ¼ 1

NðN ! 1Þ
XN

i¼1

XN

j¼1

min Tij; T̂ ij

! "

Tij þ T̂ ij

; ð7Þ

where N is the number of locations, Tij denotes the predicted population °ow from
location i to location j and T̂ ij represents the empirical °ow. Apparently, if each Tij

is equal to T̂ ij, SSI ¼ 1, and if all T̂ ij are far from the real values, then SSI ' 0.
Root mean square error. The root mean square error (RMSE) or the root

mean square deviation (RMSD) is a measure of the di®erences between the values
predicted by a model or an estimator and the values observed.65 The RMSE is
calculated as

RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

XN

j¼1

T̂ ij ! Tij

! "2
vuut : ð8Þ

3. Results

3.1. Temporal characteristics of population °ows in China

With the LBS data, we ¯rst calculate the total number of individuals moving into
and out of each of the 358 prefectures on a daily basis. Then, we calculate the net
population °ow, that is, the total in°ow minus the total out°ow, in each city. The
net°ows for all 358 cities, as well as the top 10 cities with the highest and the lowest
net°ows before the Spring Festival, are shown in Fig. 2. We can observe a strong
weekly pattern for the overall net°ows during normal periods, that is, di®erent cities
may receive additional travelers or lose visitors on workdays or weekends. Another
strong signal is the sharp variation of net°ows on days before and after major hol-
idays, such as Labor Day, National Day and traditional Chinese festivals, including
the Mid-Autumn Festival, the Dragon Boat Festival, the Spring Festival, among
others, and the change is almost symmetrical around holidays. Additionally, the
magnitude of the °ow varies a lot, on account of the di®erences in the cities'
populations, economies, and geographic and sociodemographic factors such that a
few big prefectures with large values of net°ow are more visible in Fig. 2, however,
there are more prefectures with small net°ows in opposite signs, the conservation of
°ows always holds.

The symmetry of the variation of the net°ows before and after the major holidays
can be explained by the likelihood that people might visit their hometowns or travel
when the holiday season begins and then return to their prior locations afterward,
producing the return trips that roughly match the departures. We refer to this as the
back°ow e®ect. However, the back°ow e®ect varies from region to region, such that
cities of economic and strategic importance (Fig. 2(b)) have a large population
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exodus before the holidays and arrivals at the end of the holidays, in reverse to the
cities that host labor-export services (Fig. 2(c)).

3.2. Spatial distribution of population °ows in China

The geographic distribution of population °ows exhibits an extremely uneven pat-
tern, with the large-scale mobility occurring in the more economically developed
eastern side of the Hu Huanyong Line66 (dashed line in Fig. 3), also called the Heihe–
Tengchong Line, which is the well-recognized line for the east–west divide of the
population density in China. Provincial capitals (e.g. Chengdu in Sichuan Province,
Zhengzhou in Henan Province, etc.), as well as the more economically advanced
cities (e.g. Shenzhen in Guangdong Province, Suzhou in Jiangsu Province, etc.),
are mostly observed to be the centers of population °ows regionally. These local
networks are scattered across various regions. Figure 3 also shows a high intensity of
population °ows between provincial capital cities and regional central municipalities.
Figures 4(a) and 4(b) show the geographic distributions of the population °ows
between provinces and cities, respectively, through the chord diagram. We ¯nd that
the population movement in each province is mainly concentrated in its cities

(a)

(b) (c)

Fig. 2. Temporal patterns of population °ows in China in 2013. (a) The net°ows of population mobility
at the prefecture level from April 23, 2013 to April 30, 2014. Each curve represents the change of the net
population °ow in a prefecture. (b) Top 10 cities with the largest net population out°ow before the
holidays. (c) Top 10 cities with the largest net population in°ow before the holidays.
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(this can also be observed in Fig. 2(b)). The average rate of intraprovincial
population migration in China is 45.22%, with the lowest at approximately 30% in
Tibet and the highest at 64.67% in Guangdong. We can also observe a high frequency
of population °ows across urban agglomerations, such as the Jing-Jin-Ji (Beijing–
Tianjin–Hebei) Region, the Yangtze River Delta Economic Zone (economic region
including Shanghai, Zhejiang and Jiangsu) and the Pearl River Delta Metropolitan
Region (a dense network of cities that covers nine prefectures of Guangdong
Province, namely Dongguan, Foshan, Guangzhou, Huizhou, Jiangmen, Shenzhen,
Zhaoqing, Zhongshan and Zhuhai and the Special Administrative Regions (SARs)
of Hong Kong and Macau). These regions host many of the most high-tech and
capital-intensive manufacturing industries in China, which provide many job
openings and competitive salaries.

For further understanding of the variation of human mobility networks across
periods, we mapped the population mobility network with an average daily °ow (
1000 and a distance >50 km at the county level during workdays, weekends, three-
day holidays (e.g. Labor Day and Dragon Boat Festival) and others, as shown in
Fig. 5. We ¯nd a signi¯cant increase in the volume of movements and a more diverse
mobility during the holidays, except New Year's Day, which is mainly caused by the
vacation policy (only one day o® on January 1, 2014). Notably, during National Day,

Fig. 3. The geographic distribution of human mobility. The size of point represents the average in°ow in
the period of China Chunyun. Plots interprovince and intercity Top 42 cites with the highest average daily
°ow, respectively.
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(a)

(b)

Fig. 4. Chord diagram for human mobility. (a) and (b) Plots interprovince and intercity Top 42 cites
with the highest average daily °ow, respectively.
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the mobility network patterns are diverse, such that links with heavier °ows above a
certain amount increase substantially, even more than during the Spring Festival,
indicating that people travel for more diverse purposes with a variety of choices
during the seven-day holiday. In contrast, peoples' main reason for traveling
during the Chunyun period is to go home for the Spring Festival, which also happens
during the other traditional Chinese festivals (e.g. the Dragon Boat Festival and the

workday

National Day

New Year’s Day

weekend

Three-day Holiday

Chunyun period

Fig. 5. A comparison of spatial patterns of mobility at di®erence periods.The human mobility networks
are visualized with average daily °ow on links ( 1000 and distance > 50 km at county level, the size of the
edge is proportional to the average daily °ow from origin to destination.
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Mid-Autumn Festival), such that the shape of the network connected by edges in
other periods is more monotonous in comparison with National Day. However, the
travel distance during the Chunyun period is longer than in any other period. In
Sec. 3.2, we will illustrate the reason behind it in conjunction with the results of the
gravity model.

Comparing the distributions of travel distance during workdays and weekends, we
observe that short-distance travel occurs more frequently during weekends, while
long-distance travel occurs more frequently during workdays (Fig. 6(a)). We infer
that the increase in the proportion of long-distance travel during workdays is mainly
caused by business trips. On New Year's Day (with only one day o® on January 1,
2014), the number of °ows is small (Fig. 2), while long-distance travel occurs more
frequently in this period, suggesting that people are more likely to stay home or
travel shorter distances if they do not need to work overtime. With additional
comparisons, we also ¯nd that the size (the average value during di®erent periods) of
net°ows increases as the days of the holiday decrease (Fig. 2), but the travel distance
decreases as the days of the holiday decrease (Fig. 6(a)).

To further investigate the di®erences of distributions of travel distance in various
periods, we draw a cumulative probability distribution against distance at the
county level (Fig. 6(b)). Apparently, as county-level mobility networks capture more
short-distance travels, the proportion of population movements with longer-distance
travels is substantially higher in the prefecture-level distribution than in the county-
level distribution. For example, at the prefecture level, 41.04% movements occur
within 200 km during the Chunyun period; at the county level, the proportion
increases to 69.16%.

Fig. 6. Cumulative distribution of travel distances at (a) prefectural level and (b) county level.

B. Song et al.

2250054-12

In
t. 

J. 
M

od
. P

hy
s. 

C 
D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 S

U
N

 Y
A

T-
SE

N
 U

N
IV

ER
SI

TY
 o

n 
11

/2
1/

21
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



3.3. Comparison of mobility models

Parameter estimation in gravity model. First, we use the grid search method67

to estimate parameters ! and " of the gravity model. Second, we set the candidate
value for both parameters from 0 to 10 and then calculate all the candidate pa-
rameter sets to calculate the SSI (see Eq. (7)) of the gravity model. Finally, we select
the parameter set that maximizes SSI. The results are shown in Table 1.

We observe that the value of ! di®ers in normal times (workdays and weekends)
and on holidays; the former has the minimum value of 0.89, and the latter has close
to 1, indicating that the pattern of mobility in normal times is routine travel dom-
inated by a ¯xed mode of work and life, without much °exibility, such that the
destinations' attraction in normal times has a lower e®ect on human mobility. In
contrast, people travel for long-distance tourism during the festivals such that the
attraction of the destination comes into play. Notably, there is little di®erence in the
parameters of workdays and weekends, although the value of " on weekends is a little
larger than that on workdays. This is because both belong to normal times, and few
people choose to travel freely for long distances (crossing city borders).

Additionally, the parameter " value of 1.31 being smaller during the Chunyun
period than in any other period (except New Year's Day) suggests that individuals
are less concerned about the travel costs to return home for the Spring Festival such
that more long-distance travel occurs in this period (Fig. 5). In contrast, the value of
" on National Day (also called the golden week for tourism in China) is the highest,
which is caused by the increase of long trips.

Human mobility calculation.We then use the models presented in Sec. 2 to
calculate the probability Pij of an individual at location i selecting location j as the
destination. Then, the population °ow Tij between the two communities i and j can
be approximated by

Tij ¼ Oi & Pij; ð9Þ

where Oi represents the total out°ow of location i. Therefore, we can compare the
predictive accuracy of the mobility °ow of each model by calculating the indicators of
SSI and RMSE.

Comparison of calculated results.As shown in Tables 2 and 3, in general, the
OPS model has a better prediction e®ect across all six periods, indicating that the
travel assumptions of the OPS model among the variants of the IO model correspond
to the actual human mobility. The gravity model also performs well during di®erent
periods. Surprisingly, the radiation model, which has shown excellent prediction
performance in commuting, migration and commodity °ows in the United States, is

Table 1. The parameter estimation results of the gravity model.

Workday Weekend New Year's Day Three-day holiday National Day Chunyun period

0.89 0.89 1.04 1.05 0.98 0.96
1.43 1.50 1.07 1.51 2.19 1.31

Human mobility over di®erent types of dates in China
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Table 3. Comparison of models' prediction accuracy by RMSE.

Time Gravity Radiation OPS OO Impedance

Workday 4226.668 3726.321 2643.611 3978.870 3902.999
Weekend 4530.526 3709.948 2821.425 4179.692 4000.847
New Year's Day 2907.887 5184.735 2625.831 4154.186 4189.328
Three-day holiday 4883.928 4040.197 3308.976 4824.597 4586.256
National Day 11241.906 6211.685 5116.416 7390.114 6912.823
Chunyun period 5321.168 6760.330 401.073 5515.990 5353.729

Table 2. Comparison of models' prediction accuracy by SSI.

Time Gravity Radiation OPS OO Impedance

Workday 0.643 0.203 0.646 0.431 0.553
Weekend 0.634 0.214 0.637 0.406 0.525
New Year's Day 0.663 0.172 0.637 0.521 0.617
Three-day holiday 0.614 0.224 0.617 0.386 0.500
National Day 0.513 0.358 0.404 0.211 0.275
Chunyun period 0.683 0.184 0.672 0.472 0.599

Fig. 7. Comparison between the predictions of the mobility models and the empirical data during across
over periods. We calculate the distribution of travel distance by gravity model, radiation model, OO
model, OPS model and the impedance model, compared with real data across over periods. p is de¯ned as
the probability of travel between locations at a certain distance, travel distance was processed by loga-
rithmic function.

B. Song et al.

2250054-14

In
t. 

J. 
M

od
. P

hy
s. 

C 
D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 S

U
N

 Y
A

T-
SE

N
 U

N
IV

ER
SI

TY
 o

n 
11

/2
1/

21
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



the worst predictor of human mobility in China. This may be because the individual
prefers a potential destination near the origin rather than far from the origin in
commuting and freight, where travel costs are more important, or China and the
United States have di®erences in their economic development models, cultures, in-
dustry categories and so on. In contrast, the radiation model suggests that the
destination selected by the individual is the closest location with higher bene¯ts than
those of the origin, which may not be in accord with the more complex destination
selection rule in China, that is, people compare bene¯ts and costs when choosing a
destination.

Cumulative distribution of distance. To show the di®erences of the mobility
model more intuitively, we plot the cumulative distribution of the travel distance
calculated using the gravity model, the impedance model, the OO model, the OPS
model and the radiation model over all periods (Fig. 7). As shown in Fig. 7, the
results predicted by the OO model are far from the origin data, suggesting that the
individual selecting only the location with the highest opportunity bene¯ts does not
re°ect the reality. Additionally, we ¯nd that the second half of the curve, calculated
using the gravity model, almost coincides with the original data, revealing the
gravity model as suitable for predicting human mobility in long distances. In general,
the OPS model performs best in human mobility prediction and understanding. This
evidence demonstrates that the individual may choose not only the closest location
with higher opportunity bene¯ts than those of the origin but also other locations
with higher opportunity bene¯ts than the bene¯ts of the origin and intervening
opportunities50 in actual practice.

4. Discussion

For a country as large and populous as China, analyzing the patterns of human
mobility during speci¯c periods and comparing models for population migration
prediction are of extraordinary signi¯cance for transportation planning, urban
construction, economic improvement and crisis management. Over the past half-
century, from gravity models to IO models and their variants, models for under-
standing human mobility patterns are constantly being proposed and developed, as
well as the acquisition of trajectory data by intelligent terminal equipment, making it
possible to study the spatiotemporal characteristics and patterns of human mobility.
In this study, we have analyzed large-scale, national mobility data, extracted from
China's largest internet service provider, Baidu. The spatial coverage, resolution and
time length of these data are superior in comparison to those of previous studies in
China. We have used these data to examine the general and the exceptional mobility
patterns in China. Through our analysis of temporal patterns in 359 prefectures, we
have found that the population net°ows show a strong weekly pattern and di®er-
ences in the migration scale among the regions. Additionally, we have discovered the
back°ow e®ect around the holidays, which is driven either by traditional cultural
conditioning or by special events occurring in China, and the back°ow e®ect varies

Human mobility over di®erent types of dates in China
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from region to region due to di®erences in cultures, economies and urban infra-
structures. Interestingly, in our further study, we have found that the number of
cross-city movements increases with the number of days of the holidays, that is,
people tend to travel more often during longer holidays. However, such an increase of
traveling frequency is associated with a decrease of traveling distance, indicating that
short trips comprise the main type of travel during long holidays. Furthermore,
through our analysis of spatial patterns, we have found that the communities form
spatially cohesive regions, re°ecting the regional division of the geography, in turn
indicating that even in the era of convenient transportation and the seeming decrease
of the in°uence of distance, people still prefer to travel locally, visiting neighboring
regions more often than those farther away.

Furthermore, we have explored the mechanisms underlying the individual's
destination selection behavior in di®erent periods of human mobility using the
gravity model and four parameter-free models !!! three IO models that characterize
di®erent types of the individual's destination selection behavior, and the impedance
model that has been proven e®ective in human mobility prediction during the 2010
Haiti cholera epidemic. Notably, the OPS model performs best in predicting intercity
population °ows in China, suggesting that people may choose not only the closest
location with higher opportunity bene¯ts than those of the origin but also other
locations with higher opportunity bene¯ts than those of the origin and intervening
opportunities in real-life practice. The results con¯rm other studies' ¯ndings33,50 that
the OPS model can better predict intercity population °ows. Additionally, the
calculated results of the gravity model successfully uncover the travel mechanisms
during di®erent periods, that is, the di®erent e®ects of a destination's attraction and
travel costs drive human mobility during di®erent time periods.

However, with economic development, the improvement of the transportation
system, especially the launch of high-speed rail and aviation networks, human mo-
bility patterns in China may have changed, such that the data we have used may be
somewhat outdated. It is plausible that the limitations may have in°uenced the
applications of some of the conclusions in this paper for the current population
mobility. We believe that the analysis presented in this paper is of great signi¯cance
for the government departments concerned, when they face the problems of trans-
portation planning, urban construction, economic improvement, crisis management
and so on. Further research should focus on exploring the applicability of human
mobility for ¯ner spatial scales and on exploring the universal human mobility model
concerned with time e®ects.
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